IV. Строение атома и Периодическая система элементов.

Лекция 1

1.1. Общее представление об атоме. Модель строения атома.

В химии своеобразными элементарными частицами являются атомы, из которых построены все химические индивиды.

Громадное разнообразие химических соединений (более 2 млн., из которых ≈ 300 тыс. неорганических) обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества.

Способность атома вступать в химические соединения, его химические и физические свойства определяются структурой атома, отсюда для химии первостепенное значение имеет внутреннее строение атома и в первую очередь, структура его электронной оболочки.

Мысль о дискретном (прерывистом) строении всего сущего зародилась в глубокой древности.

В V веке до нашей эры Левкипп и Демокрит первыми употребили слово «атом» для обозначения мельчайших неделимых частиц материи («атом» - atoms — по-гречески значит «неделимый»). Самым последовательным атомистом в XVIII веке был М.В. Ломоносов.

Гипотеза об атомном строении материи получила признание лишь в середине XIX века, в форме, предложенной английским ученым Дальтоном, который, как и все его предшественники-атомисты, считая атомы самым маленькими кирпичиками мироздания.

Представление об атомах, как о мельчайших, неделимых частиц материального мира существовало в науке до начала XX века.

Открытие периодического закона в 1869г. Д.И. Менделеевым и создание периодической системы химических элементов завершили развитие атомистических представлений в XIX веке. Это открытие подготовило наступление нового этапа – изучения структуры атомов.

В конце XIX и в начале XX веков были открыты явления, которые можно было истолковать только исходя из представлений о сложности и делимости атома. Это изучение катодных лучей, явление радиоактивности и т.д.

В первой трети XX века стало известно, что атом состоит, по крайней мере, из 3-х видов элементарных частиц — электрона, протона и нейтрона. Были предложены первые модели строения атомов.

Согласно модели первооткрывателя электрона в 1897 г. <u>Гиомсона</u> (1904 г.)

Атом представляет собой «сферу положительного электричества» одинаковой плотности по всему объему диаметром порядка $1\stackrel{\circ}{A}$ ($1\stackrel{\circ}{A}$ àíãòðåì = 10^{-10} ì). Электроны как бы плавают в этой сфере, нейтрализуя положительный заряд. При химических реакциях электроны могут переходить от одних атомов к другим с образованием заряженных частиц —

ионов. Эта первая модель строения атома получила впоследствии название «пудинг Томсона». Однако модель Томсона имела большой недостаток, объяснить который он не мог – почему собственно атом существует, так как нарушался закон Кулона.

В создании современной теории строения атома особую роль сыграли Эрнест Резерфорд, построивший «планетарную модель» атома, и Нильс Бор, выдвинувший первую квантовую теорию атома.

Согласно «планетарной модели» Резерфорда (1911 год.) в центре атома имеется положительно заряженное ядро (диаметр $1*10^{-4}$ $\stackrel{\circ}{A}$), в котором сосредоточена почти вся масса атома; вокруг ядра по орбиталям движутся отрицательно заряженные электроны. Диаметр атома равен $1\stackrel{\circ}{A}$.

Но электроны, двигаясь вокруг ядра с ускорением (на них действует центростремительная сила), должны были бы согласно электромагнитной теории, непрерывно изучать энергию и, в конце концов, упасть на ядро. В этом была ошибка теории.

В 1913 году гениальный датский физик Нильс Бор предложил свою теорию строения атома, которая явилась промежуточной ступенью на пути и волновой механике.

Основные положения своей теории строения атома Бор сформулировал в виде двух постулатов. Первый постулат бора: электрон в атоме может находиться только в стационарных или квантовых состояниях с дискретными значениями энергии (условие квантования орбит). Второй постулат Бора (условие частот): при переходе из одного стационарного состояния в другое атом испускает или поглощает квант энергии, частота которого определяется соотношением hv, где h – постоянная Планка, V – частота колебания.

Теория Бора не была последовательной и содержала внутренние противоречия: с одной стороны она базировалась на модели Резерфорда и классических законах Ньютона и Кулона, а с другой вводились квантовые постулаты, не связанные с классической физикой. Заслуга бора и состоит в том, что он уточнил классическую теорию строения атома новой (неклассической) теорией квантов Планка.

На смену теории Бора пришла квантовая теория строения атома, которая учитывает волновые свойства электрона.

Поскольку химические свойства атомов и молекул зависят почти исключительно от строения электронных оболочек, а не от ядра, поэтому мы главным образом будем рассматривать электронную структуру атомов.

Модель атома — это упрощенное и наглядное изображение сложной системы.

Современная модель строения атома заключается в следующем.

<u>Атом</u> представляет собой сложную микросистему находящихся в движении элементарных частиц (несколько сотен)

<u>Атом</u> – это электронейтральная система, состоящая из положительно заряженных электронов, распределенных в пространстве вокруг ядра.

В центре атома находится положительно заряженное ядро, занимающееся ничтожную часть пространства внутри атома. Радиус ядра атома водорода $6.5*10^{-6} \stackrel{0}{A}$, радиус атома водорода $0.53 \stackrel{0}{A}$. Радиусы атомов равны $0.53-3 \stackrel{0}{A}$.

Весь положительный заряд и почти вся масса атома сосредоточена в его ядре (масса электрона равна 1/1836).

Ядра атомов состоят из <u>протонов и нейтронов</u> (общее название – нуклоны).

Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов равна атомной массе.

<u>Протоны</u> – положительно заряженные частицы (относительная масса равна 1) ядра атома. Каждый элемент имеет специфическое число протонов. Оно определяет общий положительный заряд ядра и место элемента в периодической системе.

<u>Нейтроны</u> — Электрически нейтральные частицы (с массой, равной массе протона). Число нейтронов в ядрах одного и того же элемента может быть различным.

Вне ядра находятся электроны — это отрицательно заряженные частицы (с массой, равной $\approx 1/1836$ массы протона). Число электронов в оболочке атома равно числу протонов в ядре атома.

Число протонов = заряду ядра (+) = числу электронов (-) порядковому номеру элемента.

Срайотра в такстта	40.111.117.110.0771111
Свойства элемента	рных частиц.

частица	символ	масса		заряд		
		кг.	относит. ед.	кл.	усл. ед.	
протон	p	1,673 * 10 ⁻²⁷	1,007276	1,602 * 10 ⁻¹⁹	+1	
нейтрон	n	-	1,008665	0	0	
электроны	$\frac{-}{e}$	$9,11*10^{-31}$	5,49*10 ⁻⁴	$1,602*10^{-19}$	-1	

Различные виды атомов имеют общее название – нуклиды.

Нуклиды характеризуются тремя фундаментальными параметрами: A- атомная масса, Z- заряд ядра, равный числу протонов и N- число нейтронов в ядре.

A=Z+N, r.e. Z=A-N; N=A-Z.

Химический элемент — это вид атомов, имеющих одинаковый заряд ядра (Z), он обозначается ${}_{Z}^{A}\acute{Y}$. Например ${}^{55,84}Fe$, где A — атомная масса элемента, а Z^{26} - порядковый номер 26 — число протонов, электронов; число нейтронов 56-26=30.

Нуклиды с одинаковым Z, но различными A и N называются изотопами.

<u>Изотопы</u> – разновидности элементов, ядра атомов которых содержат одинаковое количество нейтронов. Например:

 $_{1}^{1}$ \hat{I} - протий

 $_{1}^{1}2\acute{I}$ - Д- дейтерий. В природе Д : H =1 : 6800. по числу их атомов;

 $_{_{1}}^{_{3}}$ \acute{I} - T – тритий. В природе находятся в ничтожно малых количествах, радиоактивен.

В таблице Менделеева для каждого элемента дана средняя атомная масса всех его изотопов, например $^{1,00794}\acute{I}$.

Нуклиды с одинаковой 1 \hat{A} и различными Z и N называются <u>изобарами</u>, т.е. изобары — это элементы с разными порядковыми номерами, но одинаковой атомной массой.

Например: ${}^{70}_{30}Zn^{70}_{32}Ge, {}^{124}_{50}Sn^{124}_{52}Te^{124}_{54}Xe$.

Нуклиды с одинаковым N и различными Z и A называются изотонами. Например: ${}^{14}_6\tilde{N}; {}^{15}_7N; {}^{16}_8O; N=8.$

1.1.1. Поведение электрона в атоме.

Современные представления об атомах и молекулах изучает квантовая механика, в отличие от классической механики, изучающей макрообъекты, подчиняющиеся законам Ньютона.

Представление о поведении электронов, как микрообъектах основано на четырех элементах квантовой теории строения атома:

- 1. Квантовый характер энергетических изменений;
- 2. Корпускулярно-волновая природа электрона;
- 3. Неопределенность положения и скорости электрона. Принцип неопределенности Гейзенберга;
- 4. Описание состояния электрона волновой функцией. Уравнение Шредингера.

Рассмотрим эти положения.

1.1.1. Квантовый характер энергетических изменений.

Согласно квантовой теории изучения Планка (1900 год) в системе микрообъектов энергия поглощается и испускается не непрерывно, а дискретно, отдельными порциями-квантами.

Энергия кванта Е связана с Частотой излучения V согласно уравнению Планка E=hV, где h — постоянная Планка, равная $6,626*10^{-34} \ddot{A} a * \tilde{n}$. При этом частота колебаний испускаемого луча и длина волны λ связаны так, что их произведение равно скорости света C $(\tilde{N} = 2,997*10^8 i / \tilde{n})$: $\lambda V = \tilde{N}$.

Из этих соотношений следует, что чем $<\lambda$ или чем >V, тем > энергия кванта и наоборот.

Излучение или поглощение энергии совершается только в количестве одного кванта, т.е. энергии определенной частоты или длины волны.

Состояние электрона в атоме с наименьшей энергией называется основным или нормальным (Е осн.). При поглощении энергии hV электрон переходит в состояние с большей энергией, которое называется

возбужденным (Е возб). Возвращаясь в основное состояние электрон изучает то же количество энергии

E возб. – E осн. = hV \rightarrow по центру

1.2.2. Корпускулярно-волновая природа электрона. Уравнение Луи де Бройля

Известно, что свет проявляет свойства частиц — фотонов (фотоэффект А.Г. Столетова, 1889 год) и свойства волы (интерференция, дифракция), т.е. свет обладает двойственной корпускулярно-волновой природой.

 $\lambda = \frac{h}{m*c}$, где λ - длина волны, m — масса фотона, C — скорость в пустоте, h — постоянная Планка.

Эта формула выводится из известного уравнения Эйнштейта, выражающего закон эквивалентности массы m и энергии E материального объекта.

E=mc²

И уравнения Планка

E=hv

Из равенств $mC^2 = hV$

$$V = \frac{mC^2}{h}$$

Так как
$$V = \frac{C}{\lambda}$$
, то $\frac{C}{\lambda} = \frac{mC^2}{h}$, откуда $\lambda = \frac{h}{mC}$

Произведение массы тела на его скорость называется количеством движения тела или его импульсом. Обозначая импульс фотона через P, получим $\lambda = \frac{h}{p}$

Полученное уравнение выведено, исходя из того, что фотону присущи как волновые, так и корпускулярные свойства.

Французский ученый Луи де Бройль в 1924 году предположил, что корпускулярно-волновая двойственность присуща не только фотонам, но и электронам.

Поэтому электрон должен проявлять волновые свойства и для него, как и для фотона, должно выполняться последнее уравнение, которое часто называют уравнением Луи де Бройля.

Следовательно, для электрона с массой m и скоростью V можно написать: $\lambda = \frac{h}{mV}$

Это соотношение является универсальным, справедливым для микрочастиц любой природы.

Из этого уравнения видно, что у частиц длина волны де Бройля тем <, чем > m.

Итак, электрон – это:

«волна ⇔ частица»

уменьшение m \leftarrow \rightarrow увеличение m

увеличение λ уменьшение λ

уменьшение Е увеличение Е

1.1.2. Неопределенность положения и скорости электрона. Принцип неопределенности Гейзенберга

Кажущуюся двойственную природу микрочастиц объясняет установленный Вернером Гейзенбергом (Австрия) в 1927 году принцип неопределенности – основной принцип квантовой механики:

Точное определение одновременно скорости и положения микрочастицы невозможно. Причина в волновых свойствах.

Согласно принципу неопределенности произведение неопределенности скорости ΔV и неопределенности положения ΔX не может быть < чем $\frac{h}{2\pi m}$, т.е.

$$\Delta V * \Delta X \ge \frac{h}{2\pi m}; \quad \frac{h}{2\pi} = \hbar$$
 $\Delta V * \Delta X \ge \frac{\hbar}{m} \quad \hbar = 1,054 * 10^{-34} \, \ddot{A} \, e^{-8} \, \tilde{n} - \text{постоянная Дирака.}$

 $\Delta V \dot{e} \Delta X$ - погрешности в определении скорости и положения электрона.

В микромире неизбежна неопределенность результатов определения. Чем точнее определены координаты частицы, чем меньше неопределенность $(\Delta \tilde{O})$, тем менее определенной становится величина её скорости $(> \Delta V)$ и наоборот. Отсюда ясно, что нельзя точно описать размеры и формы орбиты, а также размер и форму атома. Все, что можно сказать о положении электрона в атоме, - это только вероятность его нахождения в какой-либо области пространства вокруг ядра. Поэтому представление электроне, вращающемся по орбите вокруг ядра, не соответствует свойствам микромира.

1.1.3. Описание состояния электрона волновой функцией. Уравнение Шрёдингера

Так как движение электрона в атоме имеет волновой характер, квантовая механика описывает его движение в атоме при помощи так называемой волновой функции ψ .

В разных точках атомного пространства эта функция принимает разные значения. Математически это записывается равенством:

$$\psi = F(x, y, z)$$
, где

х, у, z – координаты точки в пространстве.

Физический смысл волновой функции объяснить пока трудно, имеет определенный физический смысл ее квадрат ψ^2 . Он характеризует

вероятность нахождения электрона в данной точке атомного пространства. Величина $\psi^2 \Delta V$ представляет собой вероятность обнаружения электрона в элементе объема ΔV .

В качестве модели состояния электрона в атоме в квантовой механике принято представление об электронном облаке, плотность соответствующих участков которого пропорциональна вероятности нахождения там электрона. Под электронным облаком условно понимают область пространства вблизи ядра атома, в котором сосредоточена преобладающая часть ($\approx 90\%$) заряда и массы электрона.

Электронное облако – пространство вокруг ядра, в котором наиболее вероятно пребывание электрона, называется атомной орбиталью АО.

Вычисление вероятности нахождения электрона в данном месте атома (молекулы) и его энергии — сложная математическая задача. Она решается с помощью волнового уравнения Шрёдингера.

В 1925 году Шредингер предложил, что состояние электрона в атоме описывается уравнением стоячей электромагнитной волны. Подставив в него λ из уравнения Луи де Бройля, он получил уравнение, связывающее энергию электрона с пространственными координациями и волновой функцией ψ , которая в этом уравнении соответствует амплитуде трехмерного волнового процесса. Уравнение Шрёдингера имеет вид:

$$-\frac{h^2}{8\pi^2m}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) + u\psi = E\psi , где$$

h – постоянная Планка;

т – масса электрона;

b () — сумма вторых производных волновой функции ψ по координатам x, y, z;

и – потенциальная энергия электрона;

Е – полная энергия электрона;

 $\psi = f(x, y, z)$ – волновая функция, описывающая состояние электрона в атоме – функция пространственных координат x, y, z.

Часто все математические действия над ψ - функцией, указанные в левой части уравнения, обозначают буквой H, тогда это уравнение приобретает простую форму:

$$\hat{I} \psi = \mathring{A} * \psi$$
, где

H — оператор Гамильтона. Выражение $\dot{I} \psi$ обозначает определенное действие над ψ , чтобы получить зависимость E от ψ .

Волновое уравнение Шрёдингера в квантовой механике играет такую же роль, как законы Ньютона в классической механике.

Решения уравнения возможны только при вполне определенных дискретных значениях энергии электрона. Различным функциям $\psi_1, \psi_2, \psi_3...\psi_n$, которые являются решением волнового уравнения, каждой соответствует свое значение энергии $\mathring{A}_1, \mathring{A}_2, \mathring{A}_3...\mathring{A}_n$.

Уравнение Шрёдингера точно решено для атома водорода Н и для одноэлектронных ионов $He^+, Li^+ \grave{e} \acute{I}_2^+,$ для других атомов оно постумеровано. Однако его правильность подтверждена опытом.